본문 바로가기

고려대편입수학30

[일변수함수] 코시의 평균값 정리 코시의 평균값 정리는 우리가 이전에 배웠던 평균값 정리의 좀 더 일반화된 표현입니다. 간단하게 정의만 보고 증명도 후딱 하겠습니다. 라그랑지 평균값 정리와 아이디어는 동일합니다. 혹시 기억이 안나신다면 이 블로그에서 '평균값 정리' 를 검색하시면 10월달쯤에 쓴게 뜰겁니다. 2019. 11. 13.
[입실론델타] 합의 법칙 증명 & 삼각부등식 입실론델타에서 필수적으로 쓰이는 법칙이 2가지가 있습니다. 그 중 하나가 여기에 소개된 '삼각부등식' 입니다. 삼각부등식을 증명하라는 문제까지는 나오지 않을 것 같으나 입실론델타에서 '삼각부등식' 과 '산술기하 평균'은 정말 필수적으로 알아야하는 개념입니다. 최근 기출 추세를 보면 더이상 간단한 입델문제를 내진 않고 (ex. x->1로 갈 때, f(x)=x의 극한값이 1인 것을 입델로 증명하시오.) 위 문제처럼 증명하라는걸 내는 추세입니다. 2019. 11. 9.
[일변수함수] 호의 길이 (Arc length) 공식 제가 네이버 블로그 운영하면서 은근히 검색유입이 높았던 파트입니다. 왜인진 모르겠네요. 일단 우리는 위 공식을 상당히 자주썼겠지만 공식이 도출되는 이유를 알아야 합니다. 눈치채신분도 있겠지만 공식에 대한 정의를 보면 상당히 익숙한 조건이 적혀있습니다. 위 공식은 평균값 정리를 이용해서 유도해내는 겁니다. 일단 그래프부터 봅시다. 이런 식으로 곡선이 주어졌다 합시다. 구간 a부터 b까지를 x에 대한 구간이라하면 이에 각각 대응하는 값은 f(a)부터 f(b)까지 일 것입니다. 이게 y에 대한 구간이라 합시다. 이 때 [a,b]를 n등분하도록 합시다. 그 다음 찬찬히 시도해보죠. 이것을 이제 잘게 쪼개서 최대한 오차가 적은 여러개의 작은 직선을 곡선에 빗대보는 겁니다. 뭐, 이렇습니다. 이게 곧 삼각형 빗변의.. 2019. 11. 4.
[입실론델타] 1변수함수의 입실론델타 논법 개념설명 * 해석학 수준이 아닌 미적분학 수준에서 내는 입델 문제 위주로 다룹니다. 연세대 편입수학 1번문제는 항상 입실론델타로 나올만큼 고정문제입니다. 그렇기 때문에 합격을 생각하고 있다면 사실 입델을 절대 포기해선 안됩니다. 지금부터 쓰는 입델 시리즈를 잘 보고 기계처럼 푸시길 바랍니다. 어차피 편수에 나오는 입델은 기계처럼 푸는법만 알아도 됩니다. 수학과 학생이라면 절대 그래선 안되지만요. ▶ 입실론 델타 - 우리가 고등학교 시간때 배우는 '함수의 극한' , '함수의 연속'은 정의가 이러했습니다. 다만 이것은 대학수학을 배우게되면 애매한 표현이라고 교수님들이 언급하시긴 합니다. 가까이 다가간다라는 말 때문인데 x와 a의 거리가 얼마나 가까워야 위 극한을 정의할 수 있을지 보다 '객관적인 지표'가 필요했다 이.. 2019. 11. 1.
[급수] 멱급수 (Power series)& 수렴반지름 (Radius of convergence) 멱급수는 거듭제곱 급수라고도 불립니다. 형태는 다음과 같습니다. 이 멱급수와 함께 나오는 중요한 개념이 바로 수렴반지름입니다. 위 조건을 보시면 x=a에서 수렴하는 경우는 사실 당연합니다. 0이 되기 때문이죠. 그러면 사실 상 2번의 경우가 멱급수를 수렴하는 급수로 만들 유일한 경우인데요. 비판정법을 사용하게 되면 여러분도 알다시피 x에 대한 함수가 '절댓값'이 씌워져서 나오게 됩니다. 이 절댓값을 벗기면 구간이 형성되게 되는데 이 구간을 '수렴구간' 이라 부르구요. 이 구간에 대한 반경을 '수렴반지름' 혹은 수렴반경이라고 부릅니다. 그러면 수렴반지름에 관한 문제를 하나 풀어볼까요? 위 급수 역시 멱급수 형태입니다. 그렇죠? 그러면 위 급수가 수렴할 조건을 맞추려면 비판정법을 사용하여 L 2019. 10. 31.
[벡터미적분학] 경로의 독립성 증명 경로의 독립이라는 말 뜻은 경로에 상관없이 선적분 값이 같음을 의미합니다. 위 정의의 의미를 먼저 생각해본 다음 증명하도록 합시다. 1) 단순 닫힌 폐곡선 엌ㅋ 제가 정의 쓰다가 중복표현써버렸네여. 단순폐곡선입니다. 수학에서 말하는 '단순'이라는 것은 시점에서 종점으로 출발하는 경로가 있다고 합시다. 이 과정 속에서 단 한번도 꼬이지 않은 것을 말합니다. 만약 '무한대'꼴의 경로라고 한다면 단순곡선은 아니죠? 중간에 만나는 (꼬인지점) 점이 존재하니까요. 2) 폐곡선이란? 폐는 닫히다라는 의미로 'O' 이러한 꼴로 시점과 종점이 같은 경우를 말합니다. 그러면 위에 단순하다라는 말과 폐곡선을 종합해서 생각해보면 정의에서 말하는 단순 폐곡선 C는 임의의 원과 같다고 보시면 됩니다. 이제 증명하겠습니다. 이번.. 2019. 10. 30.