본문 바로가기

대학수학38

[급수] P급수 판정법 증명 (P-series) & 조화급수 (Harmonic Series) P급수 판정법 역시 바로 작년 연세대 편입수학에서 적분판정법 증명과 함께 나온 보너스 문제였습니다. 먼저 정의부터 볼까요? P급수는 보통 분수꼴로 나오고 p는 지수로 나오는데 이 p가 1보다 크면 수렴하고 1과 같거나 작으면 발산한다는 정의입니다. 한눈에 정리하자면 다음과 같습니다. p급수 판정법은 구간을 좀 여러개로 나눠서 판단해야합니다. 일단 수렴일때 판정하는 것은 짧습니다. 한번 보도록 합시다. 수렴은 저걸로 끝납니다. 다만 이제 발산을 증명할 때, p=1인 경우, 0 2019. 10. 28.
[급수] 적분판정법 (Integral Test) 증명 적분판정법과 P급수 판정법 증명은 바로 작년 (2019학년도) 연세대학교 기출에 그대로 출제되었던 문제입니다. 책에 나온 증명 그대로 외워가셨기만 해도 거저주는 그렇다고 배점이 낮은 문제도 아니였습니다. 이런거 틀리는 순간 합격은 물건너갔다고 생각하시고 단단히 보고 가시길 바랍니다. 1. 적분판정법의 정의부터 보도록 하겠습니다. 저기서 2번조건을 보면 제가 구간을 1부터 양의 무한이라고 반개구간으로 표시했는데 사실 꼭 1에서부터 시작하지 않아도 됩니다. 2에서 시작해도 되고, 3에서 시작해도 되고 무방합니다. 어차피, [1,무한)이 [2,무한) 보다 더 큰 범위를 가지니까요. 무슨말이냐면 예를 들어서 1부터 3까지는 증가하는 함수인데 이제 3부터 양의 무한까지는 감소하는 함수가 있다고 합시다. 이 때도 .. 2019. 10. 28.
[급수] 발산판정법 (Divergence Test) 증명 발산판정법의 증명은 간단합니다. 발산판정법의 정의는 어떤 수열의 극한값이 0이 아니거나 존재하지 않을 때, 그 수열의 급수는 발산한다! 입니다. 근데 우리가 이 정의를 읽다보면 어디서 많이 본듯한 정의임을 알 수 있습니다. 바로, 일반항 판정법이죠. 이전에 포스팅해놨지만 다시 한번 쓰겠습니다. 일반항 판정법의 정의는 어떤 급수가 수렴할 때 그 수열의 극한값은 0이다. 였습니다. 그리고 우리는 이것이 참인 명제임을 이전시간에 증명했었습니다. 우리가 고등학교 시간때 배웠듯이 참인 명제의 대우의 참/거짓 판정은 참입니다. 따라서, 이렇게 됩니다. 어떤 급수가 수렴할 때 그 수열의 극한값은 0이다. -> 수열의 극한값이 0이 아니거나, 존재하지 않을 때, 급수는 발산한다. 대우명제죠? 따라서 발산판정법이 증명되.. 2019. 10. 28.
[일변수함수] 이상적분 (Improper Integral) 중간에 좀 많이 건너뛰었습니다. 건너뛴 파트 : 부피 공식 ex. 원통셸, 부분적분, 치환적분 (삼각치환) , 심프슨 공식, 사다리꼴 공식, 중점 법칙 등등 윗 부분 내용은 다시봐도 연고대 편입수학 기출에 나오는 유형은 아닙니다. (부분적분&치환적분 제외) 부분적분과 치환적분은 기초중의 기초기 때문에 그냥 스킵했습니다. 부분적분, 치환적분 문제 각각 10개씩만 풀어봐도 감잡히실테니 바로 이상적분하겠습니다. 이상적분이란? - 이상적분은 정의되지 않는 구간이 주어졌을 때 그것에 대한 적분을 의미합니다. 가장 많이 보는 예로 '무한대'꼴로 구간이 주어졌을 때입니다. 사실 이것은 우리가 고3때도 자주 봐오긴 했습니다. 바로 '표준정규분포'의 넓이는 1이다. 라고 배울 때 그 1이 나오는 이유가 실수 전체 구간에.. 2019. 10. 27.
[일변수함수] 적분의 평균값 정리 적분의 평균값 정리는 실제 기출 (2017)에 출제된 적이 있습니다. 먼저 정의부터 한번 보고 가도록 하겠습니다. 적분의 평균값 정리를 사용할 조건도 평균값 정리의 조건과 동일합니다. 2019. 10. 27.
[일변수함수] 미적분학의 기본정리 (Fundamental Theorem of Calculus) 이번 파트 역시 연세대 편입수학 증명문제로 자주 나왔던 문제이기도 합니다. 한번 봅시다. 미적분학의 기본정리는 2가지 정리가 있습니다. 두 개 모두 중요하니까 증명하도록 하겠습니다. 먼저 정의를 보죠. 이게 1번정리인지 2번정리인지 잘 모르겠는데 순서는 어차피 상관없겠죠?.. 어쨌든 정리가 저렇게 주어져 있습니다. 여기서도 우리는 증명할 때 평균값 정리를 사용할 거에요. 왜냐? 눈치빠르신분들은 아셨겠지만 일단 주어진 함수가 구간에서 연속이구요! 역도함수를 갖고 있다는 말은 당연히 미분가능성도 보이고 있기 때문입니다. 평균값 정리를 사용할 조건이 다 들어맞으니 당연히 사용해드려야죠~ 그다지 어렵진 않죠? 이제 다음 정리를 봅시다. 위 정리 역시 그다지 어렵지 않습니다. 한번 풀어봅시다. 2017 기출에 적.. 2019. 10. 26.