포텐셜함수1 [벡터미적분학] 포텐셜 함수 & 보존적 벡터장 증명 오랜만에 벡터미적분학 쪽 글을 씁니다. 이전 시간에 다룬 선적분의 기본정리와 경로에 독립성의 연장선상입니다. 잠깐 복습 좀 해봅시다. 선적분의 기본정리는 함수 f가 t가 [a,b]의 범위 내에서 벡터함수로 정의됩니다. 그리고 주어진 매끄러운 곡선 C에서 함수 f가 기울기 벡터를 갖고 연속임과 동시에 미분가능한 2,3변수함수면 미적분 기본정리 1번정리같은 꼴로 나온다는 이론이였습니다. 그리고 경로에 독립은 경로와 무관하게 단순폐곡선 C에서의 선적분 값은 0값을 가진다는 말이였습니다. 보존적 벡터장의 정의는 경로에 독립이라는 전제조건 하에 주어진 벡터장 F가 연속인 1계 편도함수를 가지고 P,Q의 편미분값이 동일한 경우를 말합니다. 이를 간단히 정리하겠습니다. * 정의 제가 잘못적은 것일수도 있으니 교재 한.. 2019. 11. 21. 이전 1 다음